

Key Images and Concrete Representations These are interchangeable and children should be regularly exposed to a range of these models to suit the learning.

Addition and subtraction	Part - part - whole cherry diagram Bar model Ten frames Counting on fingers Number lines (numbered and blank) Place value grid Dienes Place value counters Double sided counters
Multiplication and division	Counters Dienes Number lines Place value counters Using fingers

Addition

Children should be secure in number and place value, particularly partitioning number in different ways, before starting calculation strategies.

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole. Including being fluent in number bonds to 10 .			$4+3: 7$ - $6+4$ \square 5 3
Starting at the bigger number and counting on		$12+5=17$ Start at the larger number on the number line and count on in ones or in	$5+12=17$ The strategy of using hands to count is appropriate! Place the larger number in your head and count on the smaller number to find your answer.

Objective and Strategies	Concrete	Pictorial	Abstract
Taking away ones and counting back "What's the difference between ..." and ".. take away .." to reinforce interchangeability	Use physical objects, counters, cubes etc to show how objects can be taken away and to reinforce one to one correspondence Use counters and move them away from the group as you take them away counting backwards as you go.	Cross out drawn objects to show what has been taken away. $8-1=7$ Count back on a number line or number track Start at the bigger number and count back the smaller number showing the jumps on the number line. This can progress all the way to counting back using two 2 digit numbers.	$\begin{gathered} 18-3=15 \\ 8-2=6 \end{gathered}$ Put the first number in your head, count back the second number. What number are you at? Use your fingers to help count back.

Now I can subtract my ones.

[^0]Year Group expectations: End of Year 2 - fluent in 2, 5 and 10 tables up to $12 x$. (2 times 4 is 8 etc not skip counting) End of Year 3 - fluent in $2,3,4,5,8,10$ tables up to $12 x$ with associated division facts End of Year 4 - fluent in all 12 times tables up to $12 \times$ with associated division facts

Objective and Strategies	Concrete	Pictorial	Abstract
Repeated addition	$\begin{aligned} & 3+3+3=\underline{9} \\ & 3 \times 3=\underline{9} \end{aligned}$		$3 \times 6=$ \square $6+6+6=$ \square $3+3+3+3+3+3=$ \square
Arraysshowing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences. $\begin{aligned} & 4 \times 6=\underline{24} \\ & 6 \times 4=\underline{24} \end{aligned}$	Draw $0000^{4 \times 2=8}$ $0000^{4 \times 4-8}$ $00^{2 \times 4=8}$ $00^{2 \times 4}$ $4 \times 2=8$ 4	Use an array to write multiplication sentences If $5 \times 3=15$ Then $3 \times 5=$ \square

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or draw dienes to share quantities into equal groups. $8 \div 2=4$	Share 9 buns between three people. $9 \div 3=3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 	Use a number line to show jumps in groups. The number of jumps equals the number of groups. $12 \div 3=\underline{4}$	$28 \div 7=4$ Divide 28 into 7 groups. How many are in each group?

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. $\begin{array}{rr} \operatorname{Eg} 15 \div 3=5 & 5 \times 3=15 \\ 15 \div 5=3 & 3 \times 5=15 \end{array}$	Draw an array and use lines to split the array into groups to make multiplication and division sentences.	Find the inverse of multiplication and division sentences by creating four linking number sentences. $\begin{aligned} & 7 \times 4=28 \\ & 4 \times 7=28 \\ & 28 \div 7=4 \\ & 28 \div 4=7 \end{aligned}$
Division with a remainder	$14 \div 3=$ Divide objects between groups and see how much is left over	Jump forward in equal jumps on a number line then see how many more you need to jump to find a remainder. Draw dots and group them to divide an amount and clearly show a remainder.	Complete written divisions and show the remainder using r .

[^0]: Multiplication

