

Key Images and Concrete Representations. These are interchangeable and children should be regularly exposed to a range of these models to suit the learning.

Addition and subtraction	Part – part – whole cherry diagram Bar model Ten frames Counting on fingers Number lines (numbered and blank) Place value grid Dienes Place value counters Double sided counters
Multiplication and division	Counters Dienes Number lines Place value counters Using fingers

Addition

Children should be secure in number and place value, particularly partitioning number in different ways, before starting calculation strategies.

Objective and Strategies	Concrete	Pictorial	Abstract
Combining two parts to make a whole.		Ĵ\$ \$\$ \$\$ \$\$ \$\$ \$\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	4 + 3 7
Including being fluent in number bonds to 10.		3 Balls 2 Balls	5
		? 8 1	3
Starting at the bigger number and counting on	••	12 + 5 = 17	5 + 12 = 17
	6 +	(+++++++++++++++++++++++++++++++++++++	The strategy of using hands to count is appropriate!
			Place the larger number in your head and count on the smaller number to find your answer.
		Start at the larger number on the number line and count on in ones or in	

		one jump to find the answer.	
'Loop method' to support the addition of two 2-digit numbers	42 + 34 = 76 $40+2 + 30+4$ $70+6 = 76$	42 + 34 = 76 : :: 70 + 6 = 76	Add the ones 42 + 34 = 76 Add the tens
Compact method – no exchanging	Add together the ones first then add the tens.	Inos Inos Inos Inos Inos Inos Inos	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Subtraction

Find the difference "What is the difference between ?" "How many more?" "How many less?"	Compare amounts and objects to find the difference. Don't use number sentence yet – just the language what is the difference Use cubes to build towers or make bars to find the difference	Hereice is a single state of the difference in age between them.	Chn introduced to the operation . We show find the difference as a minus sign . Chn use this to solve difference between and more and fewer word problems. Sophia has 8 cakes and Tom had 6 cakes. How many more cakes does Sophia have?
Part Part Whole Model	Link to addition- use the part whole model to help explain the inverse between addition and subtraction. If 10 is the whole and 6 is one of the parts. What is the other part? 10 - 6 =	Draw bars to find the difference between 2 numbers. Use a pictorial representation of objects to show the part part whole model.	5 10 Move to using numbers within the part whole model.

Compact method without exchanging	$75 - 42 = \underline{33}$ Use dienes to make the first number then take the second number away.	Draw the dienes alongside the written calculation to help to show working.	This will lead to a clear written column subtraction. 4 6 3 4 - 2 1 3 = 4 2 1 $6 3 4 - 2 1 3 = 4 2 1$ $6 3 4 - 2 1 3 = 4 2 1$
Compact method with exchanging	Using dienes, start with one exchange before moving onto subtractions with 2 exchanges. Make the first number with dienes	Draw the dienes and show what you have taken away by crossing the dienes out as well as clearly showing the exchanges you make.	This will lead to an understanding of subtracting any number including decimals.
	Start with the ones, do I have enough ones? I need to exchange one of my		

tens for ten ones.
343-117=

4	5.	4	3	6	-	1	1	8					
	-	4	1	6 8 8		4			2	17.	14.4.1	• •	
5.		4	3	6	-	1	1	8	 3	1	8		
	-	4	1 24	6	1	44			ð	ŀ	11.	** *	

11

118 318

Now I can subtract my ones.

Now look at the tens.

Multiplication

Year Group expectations: End

End of Year 2 – fluent in 2, 5 and 10 tables up to 12x. (2 times 4 is 8 etc not skip counting) End of Year 3 – fluent in 2,3,4,5,8,10 tables up to 12x with associated division facts End of Year 4 – fluent in all 12 times tables up to 12 x with associated division facts

Objective and Strategies	Concrete	Pictorial	Abstract
Repeated addition	$3 + 3 + 3 = 9$ $3 \times 3 = 9$	$5 + 5 + 5 = \underline{15}$ $4 + 4 = \underline{8}$ $2 \times 4 = \underline{8}$ $5 + 5 + 5 = \underline{15}$ $5 + 5 + 5 = \underline{15}$ $5 + 5 + 5 = \underline{15}$ $5 + 5 = \underline{15}$ $5 + 5 = \underline{15}$ $5 + 5 = \underline{15}$	$3 \times 6 = $ $6 + 6 + 6 = $ $3 + 3 + 3 + 3 + 3 = $
Arrays- showing commutative multiplication	Create arrays using counters/ cubes to show multiplication sentences.	Draw $4 \times 2 = 8$ $2 \times 4 = 8$ $4 \times 2 = 8$ $2 \times 4 = 8$ $4 \times 2 = 8$ arrays in different rotations to find commutative multiplication sentences.	Use an array to write multiplication sentences . If $5 \times 3 = 15$ Then $3 \times 5 =$

		7.	1	3 2	×	2.	4		7	6	8
			× · · · · · · · · · · · · · · · · · · ·	3 2 2 4 2 8 4 0 6 8							
		2.	2	4 2 8	x 6 2 4	8		1 6	, 3	2	
				× 1 4 6	6 8 9 2 4 0 3 2						

	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	2. 3 3 - 6 x 2 - 3 . $77 + 28$
	2 decime at the end of the places in calculation the answer

Division

Objective and Strategies	Concrete	Pictorial	Abstract
Sharing objects into groups	I have 10 cubes, can you share them equally in 2 groups?	Children use pictures or draw dienes to share quantities into equal groups. $ \begin{array}{c} & & & & & & & & & & & & & & & & & & &$	Share 9 buns between three people. $9 \div 3 = 3$
Division as grouping	Divide quantities into equal groups. Use cubes, counters, objects or place value counters to aid understanding. 10^{10}_{10}	Use a number line to show jumps in groups. The number of jumps equals the number of groups. 12 ÷ 3 = <u>4</u> 0 1 2 3 4 5 6 7 8 9 10 11 12 3 3 3 3 3	28 ÷ 7 = 4 Divide 28 into 7 groups. How many are in each group?

Division within arrays	Link division to multiplication by creating an array and thinking about the number sentences that can be created. Eg $15 \div 3 = 5$ $5 \times 3 = 15$ $15 \div 5 = 3$ $3 \times 5 = 15$	Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system Image: Second system <	Find the inverse of multiplication and division sentences by creating four linking number sentences. 7 x 4 = 28 4 x 7 = 28 28 \div 7 = 4 28 \div 4 = 7				
Division with a	$14 \div 3 =$ Divide objects between groups and	Jump forward in equal jumps on a number line then see how many more you need to	Complete written divisions and show the remainder using r.				
Ternainder	see how much is left over	jump to find a remainder.					
			$\begin{array}{c} 29 \div 8 = 3 \text{ REMAINDER 5} \\ \uparrow \uparrow \uparrow \uparrow & \uparrow \\ \text{dividend divisor quotient} & \text{remainder} \end{array}$				
		Draw dots and group them to divide an amount and clearly show a remainder.					
		() () () () () () () () () ()					

Compact division		Begin with divisions that divide equally with no remainder.
		1. 872:4-218
		2 1 8 4 8 7 ³ 2
		Move onto divisions with a remainder.
		2. 432÷5=86r2
		0 8 6 r 2 5) 4 *3 ³ 2
		Show the remainder as a fraction. Use the language 86 and 2 out of the next group of 5.
		$432 \div 5 = 86 \frac{2}{5}$
		Finally move into desimal places to divide

